10x+2x^2=61

Simple and best practice solution for 10x+2x^2=61 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x+2x^2=61 equation:



10x+2x^2=61
We move all terms to the left:
10x+2x^2-(61)=0
a = 2; b = 10; c = -61;
Δ = b2-4ac
Δ = 102-4·2·(-61)
Δ = 588
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{588}=\sqrt{196*3}=\sqrt{196}*\sqrt{3}=14\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-14\sqrt{3}}{2*2}=\frac{-10-14\sqrt{3}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+14\sqrt{3}}{2*2}=\frac{-10+14\sqrt{3}}{4} $

See similar equations:

| (-2+54)+(9x+13)=90 | | 6+b+3b=18 | | 2n^2+10n-2=406 | | −4(9−3x)=0 | | 5(x-7=6(x+2) | | 2y−3=√3y2−10y+12​ | | 7x=(√49)7 | | -3(x-4)-8=6 | | 180-2x=64 | | x-4=0+17 | | 4y=(2y+8) | | 10+2(2x+1)=16 | | -z-3=-10 | | x-4=12(0)+17 | | 2n−1=3 | | -102=6(n-4) | | 2z/8=8 | | 6y+3=90 | | 4+z=10 | | 2/5x-1=-2 | | x(3)+x(2)+1=16 | | -8=-2(-10+n) | | 7x+6=4x+11 | | X÷5=3÷35+x+1÷7 | | x⁴+5x²+4=0 | | 7x=(7)7 | | 16=-7y=+3(y+4) | | (x)(2x)^2=1.3*10^-18 | | 4(x+2)+6=-8 | | 4(x+2)+6=8 | | 2x+5=6x3 | | -15=3u/5 |

Equations solver categories